检测项目检测报告检测机构检测外包检测标准检测资讯
您当前所在的位首页 > 检测 > 建筑材料与工程检测 > 声环境检测
大家可能都有这样的体会,去一间(尚未放置家具)空房间,若在里面说话会感觉听到的声音很空洞,发嗡声;若这间房间装修后放置了家具,说话时听到的声音就没有这种现象。这就是“交混回响时间”在作祟。
项目介绍相关知识相关图集相关下载相关新闻相关项目我们的优势

  交混回响时间

  大家可能都有这样的体会,去一间(尚未放置家具)空房间,若在里面说话会感觉听到的声音很空洞,发嗡声;若这间房间装修后放置了家具,说话时听到的声音就没有这种现象。这就是“交混回响时间”在作祟。

  1.反射与前次反射

  声波在传播过程中,若遇到比它波长大的物体表面,便会产生反射。当反射面比声波的波长大很多时,反射规律与几何光学相似,即声线的反射角等于入射角。这时,我们可以用几何声学来研究反射的情况。

  我们把听到直达声后50毫秒以内到达的反射声称为前次反射或早期反射。由于哈斯效应,前次反射声人耳不但分辨不出来,而且还会将它当作直达声的一部分,在主观效果上增加了声音的响度但又不会影响清晰度。这也是为什么在室内讲话时要比在室外讲话听起来声音响一些的缘故。

  剧场与音乐厅的前次反射强弱程度是一个很重要的声学条件,18世纪在欧洲建造的一些古典音乐厅,以音质效果极佳而著称于世,曾使很多声学家和建筑学家感到迷惑。但后来的研究和工程实践表明,一些优秀的古典音乐厅,除了良好的声扩散与适度混响之外,很重要的原因是这些剧场或音乐厅的观众席有足够的前次反射,尤其是来自侧向和顶棚的前次反射声增加了室内声能密度,提高了音乐的空间感和丰满度。

  2.混响与最佳混响时间

  混响是建筑声学中最重要的参数之一,适度的混响,可以明显的改善声音质量,改变音乐的音色和风格。

  我们已经知道,室内的声波遇到四周墙面以及地面和顶棚会产生反射,而这种反射过程是往复多次的,从而延长了到达听者的时间。如果这些反射声在直达声到达听者50毫秒后仍多次反射而继续存在,直到一段时间后才衰减消失,听起来有一种余音不绝的感觉。这种过程与现象,我们称为混响,即交混回响之意。

  那么,如何确定混响从建立到消失的时间呢?也就是说,如何确定混响时间呢?上个世纪初,声学家赛宾(W.C.Sabie)通过研究后提出:当声源停止发声后,残余的声能在室内往复反射,经吸收衰减,其声能密度下降为原来值的百万分之一所需要的时间,或者说,室内声能密度衰减60分贝所需要的时间称为混响时间。

  混响时间的实测值与计算值会有一定的差值。一般来说,低频混响时间的实测值小于计算值,高频混响时间的实测值大于计算值。在实际计算时应根据经验作一些修正。

  混响时间对声学品质的影响是众所周知的,过长过短都会使观众感到疲劳。只有适当的混响时间,才会使观众处于一种赏心悦目的艺术享受之中,此时声音丰满动听,音符生动活跃、语言亲切温柔,使观众有强烈的空间感和丰富的色彩感。

  那么,多长的混响时间才是最佳的呢?

  事实上,很难确认一个统一的最佳混响时间标准,没有一个确定的数据,很大程度上是个范围值。不同类型,不同风格,不同专业用途的剧场都有不同要求。而且,它还受民族文化背景的影响。因此,各国发表的数据都不尽相同。

  低频段混响时间稍长有利于音乐的丰满度和语言的温暖感,适宜于各类音乐演出,而高频段混响时间长一点,则容易表现泛音,增加音乐“水分”与鲜活感。

  不同频率的不同混响决定了剧场的音色特性。在硬质装饰材料的环境中,高频混响时间长,音色冷艳,音色效果能模仿出山洞,水泥大厅,大理石宫殿等。而软质装饰材料的低频混响突出,音色偏暖,有着古典音乐厅与歌剧院的特色。

  对于室内声音的形成,除了考虑其分布外,还需要考虑到达某一接收点的直达声和各个反射声,在时间上有先后。当一声源在室内发声时,声波由声源到室内各接收点形成了复杂的声场。对于任一接收点,其所接收的声音可以简单地看作由三部分组成,第一部分为直达声,它是由声源直接到接收点而不受界面影响的声音,其声音强基本上按照距离平方反比而衰减;第二部分为早期反射声。它是指在直达声之后相对延迟时间为50毫秒内到达的反射声。这种短延时的反射声难以与直达专长分开,对直达声起到加强作用;第三部分为混响声,它是在前次反射后陆续到达的、经过多次反射的声音的统称。影响声的长短与强度将影响厅堂音质,如清晰度和丰满度等。

  当声源在室内辐射声能时,声波在空间传播,当遇到界面时,部分声能被吸收,部分被反射。声波继续传播时,又第二次、第三次以及多次地被吸收的反射。这样,在空间就形成了一定的声音密度。随着声源不断地供给能量,室内声能密度将随时间增加而增加。这就是声音的增长过程。

  这时,单位时间内被室内吸收的声能与声源供给的声能相等,室内声能密度就不再增加,而处于稳态平衡。对于一个室内吸声量大、容积也大的房间,接近稳态前的某一时刻的声能密度,比一个吸声量、容积均小的房间要弱。所以,在房间声学设计时,需恰当地确定容积和室内吸声量。

  当声音达到稳态时,若声源突然停止发声,室内接收点上的声音并不会像在露天那样立即消失,而要有一个衰变过程、首先直达声消失,反射声将继续下去,每反射一次,声能被吸收一部分,因此,室内声能密度将逐渐减弱,直到完全消失,我们称之为“混响过程”或“交混回响”。

  室内声音的增长、稳态和衰变过程可以看出,当室内表面反射很强时,声源发声后,可获得较高的声能密度,而进入稳态过程的时间稍晚一点。当声源停止发声后,反射声消失的时间拖得长些,即声音变较慢。若室内表面吸声量增加,则与上述情况相反,短时间内达到稳态,且声能密度小,其混响过程也短一些。

  对音质要求较高的场所,须控制交混回响时间,譬如音乐厅,其内部装修就须专门人员进行设计,根据房间的大小、尺寸、墙壁与天花板的情况,采用一定的吸音材料以减小声音的反射。

  立体声

  立体声可以模拟音乐厅的音响效果,在不能亲身去音乐厅现场的情况下又能感觉到真实乐队各种乐器演奏时的方位与层次。

  现在多数家庭音响设备(电视机)都标注为“立体声”,但其实上并不是有了这样的设备就可以在播放音乐的房间各处都能享受到立体声。严格的说,只有人处在音响设备的两个音箱前面中央的一定区域,所听到的才是真实的立体声。

  立体声的制作完全取决于录制时的拾音话筒的个数、方位和质量;当然播放时还取决于播放音响(主机与音箱)的质量。

提供声环境检测
专业 权威 快捷
关于我们 | 千测服务 | 投稿中心 | 招贤纳士 | 法律声明 | 网站地图 | 友情链接 | 联系我们

copyright 2013 千测认证网 All Rights Reserved 版权声明 沪IPC备12026492号-1